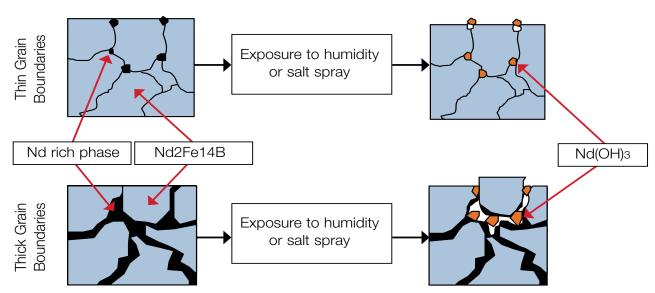


# **EVERLUBE Anti-Corrosion Coating**

DATA SHEET


## What is an Everlube Coating?

Everlube Coatings are a branch of Curtiss Wright, originally developed as a brand of dry film lubricant products, specifically designed to enhance and improve the performance of critical components and meet a wide variety of industry, defence and customer specifications for critical components. Everlube coatings are widely used by such names as Boeing, Airbus and NASA. The original Everlube coating was a thermoset coating, containing PTFE, molybdenum Di-Sulphide (MoS2) and phenolic resin adhesive.

### Why coat magnets?

As this graphic from Curtiss Wright shows, when exposed to water or humid conditions, the Neodymium rich layers at the grain boundaries react to form Neodymium Hydroxide. The effect of this conversion from Nd to Nd(OH)3, is a large volume increase along the grain boundaries, leading to cracking and degradation of magnet properties. The speed of this is enhanced when salt is present.

Figure 1: Shows the corrosion mechanism for NdFeB rare earth magnets.





## **EVERLUBE**

# **Anti-Corrosion Coating**

## **Introduction to the Everlube 6155 Magnet Coating**

Everlube 6155 is an aluminised barrier coating specially formulated to maximize adhesion and corrosion protection when applied to rare earth magnets. The coating is very durable and provides excellent chemical and corrosion resistance.

The application of an Everlube coating to a magnet surface is more complex than a NiCuNi coating or an Epoxy Coating or even a dual NiCu+Epoxy Coating however it has the following distinct advantages;

- 1. Everlube coated magnets have significantly improved corrosion resistance.
- 2. Everlube coated magnets have a much better range of chemical compatibility.
- 3. Excellent quantified performance of 500 Hours Minimum in a salt spray test environment.
- 4. 4H Hardness

## **Typical Functional Properties**

| Characteristic              | ASTM Test Method    | Value                                |
|-----------------------------|---------------------|--------------------------------------|
| Corrosion Resistance        |                     | >500 hours                           |
| Test Panel                  | ASTM B-117          | 0.8 mils on grit blasted steel panel |
| Test Panel Coating Method   |                     |                                      |
| Abrasion Resistance         | ASTM D-4060         | <40 mg/1000 cycles                   |
| Coefficient Friction        | ASTM D-2714         | n/a                                  |
| Operating Temperature Range |                     | -300°F to 400°F (-184°C to 204°C)    |
| Load Carrying Capacity      | ASTM 2625, Method B | n/a                                  |
| Wear Life                   | ASTM 2625, Method A | n/a                                  |

#### Chemical Resistance (ASTM D-2510, Method C)

| Hydrocarbon Test Fluids TT-S-735, Method C | Pass | Trichloroethylene, O-T-634    | Pass |
|--------------------------------------------|------|-------------------------------|------|
| Aviation Fuel, MIL-G-5572, Grade 115/45    | Pass | 1,1,1 Trichoroethane          | Pass |
| Methly Ethyl Ketone                        | Pass | Anhydrous Ethanol             | Pass |
| Toluene                                    | Pass | Methyl Phenyl Silane (DC-550) | Pass |

Page 2 of 2